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Association of metabolic–bariatric surgery with long-term 
survival in adults with and without diabetes: a one-stage 
meta-analysis of matched cohort and prospective controlled 
studies with 174 772 participants
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Summary
Background Metabolic–bariatric surgery delivers substantial weight loss and can induce remission or improvement of 
obesity-related risks and complications. However, more robust estimates of its effect on long-term mortality and life 
expectancy—especially stratified by pre-existing diabetes status—are needed to guide policy and facilitate patient 
counselling. We compared long-term survival outcomes of severely obese patients who received metabolic–bariatric 
surgery versus usual care.

Methods We did a prespecified one-stage meta-analysis using patient-level survival data reconstructed from prospective 
controlled trials and high-quality matched cohort studies. We searched PubMed, Scopus, and MEDLINE (via Ovid) for 
randomised trials, prospective controlled studies, and matched cohort studies comparing all-cause mortality after 
metabolic–bariatric surgery versus non-surgical management of obesity published between inception and Feb 3, 2021. 
We also searched grey literature by reviewing bibliographies of included studies as well as review articles. Shared-frailty 
(ie, random-effects) and stratified Cox models were fitted to compare all-cause mortality of adults with obesity who 
underwent metabolic–bariatric surgery compared with matched controls who received usual care, taking into account 
clustering of participants at the study level. We also computed numbers needed to treat, and extrapolated life 
expectancy using Gompertz proportional-hazards modelling. The study protocol is prospectively registered on 
PROSPERO, number CRD42020218472.

Findings Among 1470 articles identified, 16 matched cohort studies and one prospective controlled trial were included 
in the analysis. 7712 deaths occurred during 1·2 million patient-years. In the overall population consisting 
174 772 participants, metabolic–bariatric surgery was associated with a reduction in hazard rate of death of 49·2% 
(95% CI 46·3–51·9, p<0·0001) and median life expectancy was 6·1 years (95% CI 5·2–6·9) longer than usual care. 
In subgroup analyses, both individuals with (hazard ratio 0·409, 95% CI 0·370–0·453, p<0·0001) or without (0·704, 
0·588–0·843, p<0·0001) baseline diabetes who underwent metabolic–bariatric surgery had lower rates of all-cause 
mortality, but the treatment effect was considerably greater for those with diabetes (between-subgroup I² 95·7%, 
p<0·0001). Median life expectancy was 9·3 years (95% CI 7·1–11·8) longer for patients with diabetes in the surgery 
group than the non-surgical group, whereas the life expectancy gain was 5·1 years (2·0–9·3) for patients without 
diabetes. The numbers needed to treat to prevent one additional death over a 10-year time frame were 8·4 (95% CI 
7·8–9·1) for adults with diabetes and 29·8 (21·2–56·8) for those without diabetes. Treatment effects did not appear 
to differ between gastric bypass, banding, and sleeve gastrectomy (I² 3·4%, p=0·36). By leveraging the results of this 
meta-analysis and other published data, we estimated that every 1·0% increase in metabolic–bariatric surgery 
utilisation rates among the global pool of metabolic–bariatric candidates with and without diabetes could 
yield 5·1 million and 6·6 million potential life-years, respectively.

Interpretation Among adults with obesity, metabolic–bariatric surgery is associated with substantially lower all-cause 
mortality rates and longer life expectancy than usual obesity management. Survival benefits are much more 
pronounced for people with pre-existing diabetes than those without.
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Introduction
The rising prevalence of obesity and overweight exerts 
a major public-health toll worldwide, contributing to 
5 million deaths and 160 million disability-adjusted 

life-years in 2019.1,2 High body-mass index—or more 
precisely, visceral adiposity—is a component of the 
constellation of cardiovascular risk factors that comprise 
the metabolic syndrome,3 and has strong epidemiological 
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associations with diabetes, coronary heart disease,4 
hypertension, certain cancers,5,6 and premature death.7,8 
Consequently, clinical practice guidelines in endo
crinology and cardiology emphasise weight control and 
weight loss interventions—through behavioural and 
lifestyle modification, pharmacotherapy, and metabolic–
bariatric surgery—as a cornerstone of lowering 
macrovascular disease risk.9–13 Several medium-term to 
long-term observational studies and randomised con
trolled trials have reported that in addition to inducing 
substantial and durable weight loss, metabolic–bariatric 
surgery commonly facilitates improvement or remis
sion of metabolic complications including type 2 
diabetes, dyslipidaemia, and obstructive sleep apnoea in 
individuals with obesity,14–23 which is the basis for recent 
and ongoing expansion in the eligibility criteria for 
weight-loss surgery and the reason why such procedures 
have been termed metabolic–bariatric surgery. 9–11

Hitherto, data concerning the long-term health effects 
of metabolic–bariatric surgery are largely limited to 

evidence from observational cohort studies rather than 
randomised controlled trials with long-term follow-up.24–33 
It is important, however, to recognise that despite 
having large denominators, the actual number of deaths 
recorded in individual studies is very low (eg, event rates 
of 5·2–10·7 deaths per 1000 person-years in the recent 
Swedish Obese Subjects [SOS] study),24 since the median 
baseline age of participants is only 40–50 years in many 
studies. The exceedingly low incidence of mortality 
severely hampers precision, reduces power, and might 
give rise to sparse-data bias in individual studies quanti
fying the treatment effect of metabolic–bariatric surgery. 
Furthermore, only a few studies exploited rigorous study 
designs to minimise confounding and selection biases.

In light of these considerations, we did a pooled 
analysis using reconstructed individual participant 
data34,35 from high-quality matched cohort studies and 
prospective controlled trials, to obtain more robust and 
accurate estimates regarding the long-term effect of 
metabolic–bariatric surgery on all-cause mortality and 
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Research in context

Evidence before this study
We searched PubMed, Scopus, and MEDLINE (via Ovid) without 
language restrictions for randomised trials, prospective 
controlled studies, and matched cohort studies comparing 
all-cause mortality after metabolic–bariatric surgery versus 
non-surgical management of obesity published between 
inception and Feb 3, 2021. We also searched grey literature by 
reviewing bibliographies of included studies as well as review 
articles. The search terms are available in the appendix. 
We excluded studies that exclusively enrolled individuals with 
specific comorbidities other than type 2 diabetes or adolescents, 
non-comparative studies, and case reports. WHO estimates that 
in 2016, 13% of the world’s population was obese. Metabolic–
bariatric surgery is an approved treatment for severe obesity in 
many countries; however, fewer than 1% of patients who qualify 
are actually treated each year. Most studies on metabolic–
bariatric operations have focused on weight-related outcomes. 
A growing body of evidence has also found remission or 
improvement of obesity-related cardiometabolic risks and 
complications including diabetes, hypertension, obstructive 
sleep apnoea, osteoarthritis, gout flares, and non-alcoholic 
steatohepatitis following metabolic–bariatric surgery. These 
metabolic benefits appear to be durable in the long term, 
as shown in a 10-year follow-up of a randomised trial comparing 
metabolic surgery with conventional medical therapy on type 2 
diabetes remission and complications. However, the long-term 
survival outcomes of metabolic–bariatric surgery have only been 
reported much more recently, with 15 of the 17 studies we 
elected to include in this meta-analysis published after 2015. 
For this pooled analysis, we included 16 high-quality matched 
cohort studies and one prospective controlled trial that 
compared all-cause mortality or long-term survival in a group of 
patients who received metabolic–bariatric surgery versus a 

control group of baseline-matched participants who received 
conventional care.

Added value of this study
This pooled analysis was done to obtain more robust and precise 
estimates of long-term survivorship after metabolic–bariatric 
surgery in adults with obesity. It combines several features 
that should be useful for the development of clinical guidelines 
and international public health policies, and for the facilitation 
of patient counselling. First, with just under 8000 events 
recorded during approximately 1·2 million patient-years of 
follow-up, the present analysis using reconstructed survival data 
of about 175 000 patients should have adequate power to 
accurately estimate the long-term survival outcomes of patients 
with metabolic–bariatric surgery for up to 3 decades. Second, 
we presented results using various summary statistics to 
enhance interpretation and facilitate communication, including 
hazard ratio estimates, numbers needed to treat, and median 
life expectancy. Third, we did subgroup analyses to discern 
treatment effects by one of the most important effect modifiers: 
type 2 diabetes.

Implications of all the available evidence
Our meta-analysis adds to a growing evidence base supporting a 
role for metabolic–bariatric surgery in the management of 
obesity, especially in patients with type 2 diabetes. These 
findings should be of interest to policy makers developing 
coordinated strategies to tackle the increasing prevalence of 
obesity and diabetes—and all their public health and economic 
consequences—as well as general practitioners, 
endocrinologists, and cardiologists who play a vital part in 
managing patients who are overweight and have 
cardiometabolic comorbidities.
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life expectancy, which are vital to guide policy and 
facilitate patient counselling.

Methods
Search strategy and selection criteria
This meta-analysis was done in accordance to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA)36 and Meta-Analysis of Observational Studies 
in Epidemiology (MOOSE)37 guidelines. We searched 
PubMed, Scopus, and MEDLINE (via Ovid) without 
language restrictions for randomised trials, prospective 
controlled studies, and matched cohort studies comparing 
all-cause mortality after metabolic–bariatric surgery versus 
non-surgical management of obesity published from 
inception to Feb 3, 2021. The search terms are available in 
the appendix (p 37). We searched grey literature by 
reviewing the bibliographies of included studies as well 
as review articles. To ensure our findings are based on 
rigorous evidence, we only included investigations with 
low risk of bias. Excluded from the meta-analysis were 
studies that exclusively enrolled patients with specific 
comorbidities other than type 2 diabetes (eg, end-stage 
renal failure38 and type 1 diabetes39) or adolescents, 
non-comparative studies, and case reports. For publications 
that constitute re-analyses of similar or overlapping patient 
populations,40–45 we chose the publication that we deemed 
to provide the most pertinent or recent information, and 
also took into considerations such as the image quality of 
published Kaplan-Meier curves, which are important to 
ensure accurate reconstruction of individual participant 
time-to-event data. Studies had to provide cumulative 
incidence function or Kaplan-Meier survivor curves for 
matched cohorts to be considered for inclusion. Studies 
that used other methods of confounder control (including 
covariance adjustment, stratification, and inverse proba
bility of treatment weighting) were excluded because 
although these techniques can be effective at mitigating 
bias, the balancing effect is lost when applied to meta-
analysis using reconstructed individual patient data, since 
the patient-level covariates or propensity-scores used for 
controlling bias are unbeknownst to meta-analysts.

Risk of bias assessment
Two reviewers (ZJK and CAC) assessed the quality of 
included studies using the Newcastle-Ottawa Scale for 
cohort studies,46 and disagreements were resolved by 
consensus or appeal to a third author (AS). Studies that 
scored 7–9 points, 4–6 points, and 3 or fewer points 
were considered to be at low, moderate, and high risk of 
biases, respectively.

Data extraction and reconstruction of individual 
patient data
Four review authors (LZW, NLS, DJL, and YEL) extracted 
study characteristics, including patients’ demographics 
and clinical characteristics, details of interventions in the 
metabolic–bariatric surgery and usual care groups, and 

the procedure and covariates used for matching. 
Validated algorithms by Guyot and colleagues47 were used 
to recover participant-level survival data from published 
Kaplan-Meier curves.48–52 Briefly, we downloaded, pre-
processed, and digitised vector and raster images of 
survivor or failure curves to obtain their step function 
values and timings of the steps.47 Additional information 
including number-at-risk tables and total number of 
events were used, if reported, to further improve the 
calibration of time-to-events.47 Survival information on 
individual patients was then recuperated by solving the 
inverted Kaplan-Meier product-limit equations.47 Side-by-
side comparisons of reconstructed and original curves 
are provided in the appendix (pp 15–36), showing that the 
algorithms47 robustly recovered individual participant 
data from published studies.

Data synthesis
The Kaplan-Meier method was used to calculate overall 
survival. One-stage meta-analyses were carried out using 
Cox proportional hazards models that address between-
study heterogeneity using a variety of approaches.53–56 The 
primary analysis was based on the shared frailty model, 
because it most explicitly accounts for between-study 
heterogeneity by incorporating a random-effects term 
that models patients within each study as being similarly 
failure-prone as other individuals belonging to the same 
study.53,54,56 Across studies, frailties are gamma-distributed 
and affect the hazard function in a latent, multiplicative 

See Online for appendix

Figure 1: Study selection

1362 records identified through database searching 
251 PubMed
722 Scopus
389 MEDLINE (via OVID)

108 additional records identified through 
bibliographical review and grey literature 
searching

455 records after duplicates removed 

77 records screened for full-text review 

17 studies included in meta-analysis 
8 (coarsened) exact matched
4 propensity-score matched
2 sequential-stratification matched
1 greedy nearest neighbour-matched
1 Mahalanobis distance matched
1 prospective controlled trial

378 records excluded after title and abstract review

60 records excluded
18 no relevant comparison (ie, bariatric vs 

non-bariatric)
16 no survival analysis or Kaplan-Meier 

survival curves
14 same or overlapping study cohort 
12 not matched or controlled
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manner. As sensitivity analysis, we also used stratified 
Cox models, which adjust for inter-study heterogeneity 
by allowing patients from a particular study to share 
a baseline hazard unique only to that study, while 
constraining partial likelihood estimates of the Cox 
coefficients to be equal across strata.53–56 Marginal Cox 
models—which assume that no heterogeneity exists 
among studies—were also fitted. As a final sensitivity 
analysis, we also computed two-stage hazard ratios (HRs) 
using inverse variance-weighted random-effects meta-
analysis and corrected for publication bias and small-study 

effects using the random-effects trim-and-fill (R0 esti
mator) procedure. Median follow-up was calculated using 
the reverse Kaplan-Meier method,57 and the proportional 
hazards assumption was evaluated by testing for the 
presence of a non-zero slope in a generalised linear 
regression of scaled Schoenfeld residuals on time.58

To ensure relevance to stakeholders, such as patients 
and health-care decision makers,59 we also computed the 
numbers needed to treat (NNT) using the formulae by 
Altman and Andersen60 based on the shared-frailty HR 
estimates and survival rates at discrete timepoints of 

Figure 2: Cumulative mortality and numbers-at-risk table for all participants who underwent metabolic–bariatric surgery vs usual non-surgical management 
of obesity
(A) One-stage meta-analyses. (B) Two-stage aggregate data meta-analysis. Hazard ratio estimates were NE for the Wong et al (2020)68 study, and did not contribute 
any computational weights to either the one-stage or two-stage random-effects meta-analyses, since no events occurred in their surgical group. Note that the 
relative hazard reduction is computed as (1 – HR) × 100% (eg, a HR of 0·508 translates to a reduction in the hazard rate of death of 49·2%). HR=hazard ratio. NE=not 
evaluable.
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interest in the non-surgical group. Since more than 
50% of patients remained alive in both the treatment and 
control groups at the end of follow-up, the actual median 
survival was not attained in either group. To report 
median life expectancy, we used the same modelling 
strategies featured in the recently published SOS study,24 
which parametrically extrapolated survival curves using 
out-of-sample predictions until half the populations 
have died in each group. Like the SOS study, we evaluated 
an array of parametisations including the Gompertz, 
Weibull, generalised gamma, log-logistic, and expo
nential models, and similarly observed that the (shared-
frailty) Gompertz regression provided the best fit based 
on visual inspection and Akaike information criteria.24 
Bias-corrected confidence intervals for the median life 
expectancy difference were obtained from 10 000 bootstrap 
replications. We calculated the global potential life-years 
that could be gained as the product of the worldwide 
number of adults with severe obesity, utilisation rates 
stratified by diabetes status, and the difference in median 
expected lifespan of surgical patients and non-surgical 
controls. All analyses were done in Stata (version 16.1) 
and nominal p values of less than 0·05 were regarded 
to indicate statistical significance. The study protocol 
is prospectively registered on PROSPERO, number 
CRD42020218472 (appendix pp 5–14).

Role of the funding source
There was no funding source for this study.

Results
The search strategy retrieved 1362 potentially relevant 
articles, and 108 additional records were identified 
through searching grey literature. After titles were 
de-duplicated and abstracts screened, 77 full-text articles 
were reviewed, of which a further 60 articles were 
excluded for various reasons (figure 1). Notably, we 
excluded the study by Christou and colleagues,61 even 
though it met all prespecified inclusion criteria, because 
we deemed it to be at risk of considerable residual 
confounding because the only variables controlled for 
were age and gender, but no weight-related covariates or 
comorbidities were used in their matching process. 
We also elected to exclude the study by Sheetz and 
colleagues38 because it focused exclusively on patients 
with pre-existing end-stage renal failure; we considered 
the characteristics of this extremely high-risk patient 
population and the interventions they received (such as 
a much higher rate of kidney transplant procedures) to 
be vastly different from all other studies, and decided 
that its inclusion would only render the pooled treatment 
effects difficult to interpret and generalise.

In total, 17 articles were included, of which 
eight (coarsened exact) matched with user-specified 
bins,27,29,31,62–65 four used propensity-score matching,25,32,66–68 
two employed sequential stratification matching,28,30 
one matched on the Mahalanobis distance metric,26 

one had greedy nearest neighbour matching,33 and 
one study was a prospective controlled trial24 that 
used sequential treatment assignment to create a 
contemporaneously-matched control group. Patient 
characteristics and intervention details are summarised 
in the appendix (pp 42–46). All studies were judged by 
two reviewers completing the Newcastle-Ottawa checklist 
to be high quality (ie, ≥7 of a maximum of 9 points; 
appendix pp 40–41).

In the overall cohort of 174 772 patients, the median 
follow-up was 69·4 months (IQR 42·2–84·9), and 
7712 deaths occurred over 1 156 376 patient-years (figure 2). 
Among 65 785 patients who underwent metabolic–
bariatric surgery, 1813 deaths occurred over a period of 
496 771 patient-years. Among 108 987 matched non-surgical 
controls, 5899 deaths occurred over 659 605 patient-years 
at-risk. After accounting for random-effects, metabolic–
bariatric surgery was associated with a reduction in the 

Figure 3: Cumulative mortality and numbers-at-risk table for all participants who underwent metabolic–
bariatric surgery vs usual non-surgical management of obesity, stratified by diabetes status
(A) Subgroup analysis of patients with type 2 diabetes. (B) Subgroup analysis of patients without type 2 diabetes. 
Note that the relative hazard reduction is computed as (1 – HR) × 100% (eg, a HR of 0·409 translates to a reduction 
in the hazard rate of death of 59·1%). HR=hazard ratio.
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hazard rate of death of 49·2% (95% CI 46·3–51·9, 
p<0·0001; p=0·35 for test of proportional hazards). HR 
estimates changed modestly in sensitivity analyses using 
one-stage stratified Cox regression or two-stage meta-
analyses (with or without correction for publication bias; 
figure 2), indicating that the results are robust to model 
specification and publication bias. On the basis of the 
shared-frailty HR estimate and applying the formulae of 
Altman and Andersen60 to the survival probabilities 
in figure 2, the NNT to prevent one additional death 
was 24·4 (95% CI 23·1–26·0) at the 10-year follow-up and 
10·8 (10·2–11·5) at the 20-year follow-up. By using the 
same modelling strategy as in the SOS study24, this meta-
analysis estimated a median life expectancy 6·1 years 
(95% CI 5·2–6·9) longer in the surgery group than in the 
control group.

Next, we did subgroup analyses to distil treatment 
effects according to type 2 diabetes status, which previous 
research had suggested to be an important effect 
modifier.27 For patients with diabetes at baseline, 
metabolic–bariatric surgery was associated with a HR 
for all-cause mortality of 0·409 (95% CI 0·370–0·453, 
p<0·0001; p=0·20 for test of proportional hazards; 
figure 3). Among 16 190 surgically-treated patients, 
456 deaths occurred over a follow-up of 70 984 patient-
years, whereas 2939 of 38 853 non-surgical matched 
controls died during a period of 170 933 patient-years 
(figure 3). The NNT was 8·4 (95% CI 7·8–9·1) at the 
10-year follow-up and 5·3 (4·9–5·8) at the 20-year 
follow-up, indicating that one death over a 10 and 20 year 

horizon could be averted for every eight or five patients 
with diabetes who undergo metabolic–bariatric surgery. 
Median life expectancy was approximately 9·3 years 
(95% CI 7·1–11·8) longer for patients with diabetes in the 
surgery group than in the control group.

A smaller treatment effect was observed for patients 
without diabetes (HR 0·704, 95% CI 0·588–0·843, 
p<0·0001; p=0·40 for test of proportional hazards), corres
ponding to a median life expectancy gain of 5·1 years 
(95% CI 2·0–9·3; figure 3). Among 8996 patients without 
diabetes at the beginning of follow-up, 165 deaths 
were recorded during 25 054 years at-risk among 
3 256 surgically-treated patients, whereas 510 of 5740 non-
surgical patients died over 44 756 patient-years. The NNT 
for people without diabetes was higher than for those 
who had diabetes, with NNTs to prevent one death 
of 29·8 (95% CI 21·2–56·8) at the 10-year follow-up 
and 19·0 (13·4–36·3) at the 20-year follow-up. There was 
substantial between-subgroup heterogeneity (I² 95·7%, 
p<0·0001 from a two-stage meta-analysis) when com
paring subgroups based on diabetes status, which can 
be interpreted to indicate that the magnitude of the 
survival benefit conferred by metabolic–bariatric surgery 
is significantly greater for patients with diabetes than for 
those without diabetes.

About 184 million people worldwide have severe obesity, 
but uptake of metabolic–bariatric surgery remains less 
than 1% among eligible adults who qualify based on 
weight-centric eligibility criteria.18,69–72 To glean further 
insights into the potential policy effect of improving 
uptake of metabolic–bariatric surgery we calculated the 
number of potential years of life that could be gained 
among the global pool of eligible candidates if uptake 
rates were hypothetically increased. We assumed that 
30% of the eligible cohort (ie, 55·2 million adults) 
have preoperative diabetes, in keeping with published 
estimates on the co-prevalence of severe obesity and 
diabetes. On this basis, every 1·0% absolute increase in 
metabolic–bariatric surgery use among candidates with 
diabetes yields 5 133 600 future life-years and without 
diabetes yields 6 568 800 future life-years. This would 
imply that if metabolic–bariatric surgery uptake in 2014 
were 1·0% among candidates with and without dia
betes, then increasing utilisation rates to 2·5% and 1·5% 
respectively would generate 10 984 800 additional potential 
life-years (figure 4). If uptake rates increased to 3·5% 
and 2·0%, among candidates with or without diabetes 
respectively, this would generate a potential future gain of 
19 402 800 life-years globally would be seen (figure 4).

Finally, we honed in on studies that focused on 
specific metabolic–bariatric operations (figure 5). Of 
23 450 patients undergoing Roux-en-Y gastric bypass, 
546 patients died during a follow-up of 216 413 patient-
years; whereas the matched control population of 
26 554 individuals recorded 1 070 deaths over a period of 
185 593 patient-years (HR 0·430, 95% CI 0·387–0·478, 
p<0·0001; p=0·0008 for test of proportional hazards). 

Figure 4: Relationship between potential life-years gained on a global level 
for every percentage increment in MBS utilisation rates among the global 
pool of eligible candidates with or without diabetes
Assuming 258 million individuals worldwide have severe obesity, every 
1·0% absolute increase in MBS use among candidates with and without diabetes 
would yield 5 133 600 and 6 568 800 potential life-years, respectively. 
For example, if MBS uptake is currently 1·0% among candidates with and 
without diabetes, then hypothetically increasing utilisation rates to 2·5% and 
1·5%, respectively, would generate 10 984 800 additional potential life-years. 
MBS=metabolic–bariatric surgery.
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59 of 7373 patients who underwent sleeve gastrectomy 
died over a follow-up of 38 531 patient-years; whereas 
those who received routine care recorded 209 deaths of 
14 097 patients over 58 559 patient-years of follow-up 
(HR 0·475, 95% CI 0·354–0·639, p<0·0001; p=0·21 for 
test of proportional hazards). There were 96 deaths 
among 4815 patients who underwent adjustable gastric 
banding compared with 454 deaths among 12 407 matched 
controls, with overall follow-up durations of 34 369 
and 82 038 patient-years in both groups, respectively 
(HR 0·500, 95% CI 0·401–0·624, p<0·0001; p=0·062 for 
test of proportional hazards). The magnitude of treatment 
effects was not dissimilar between these three bariatric 
procedures (between-subgroup heterogeneity I² 3·4%, 
p=0·36 from a two-stage meta-analysis).

Discussion
In this meta-analysis of 174 772 individuals with 
1·2 million person-years of follow-up, metabolic–
bariatric surgery was associated with approximately half 
the rate of death from any cause compared to usual care 
in the overall population, with more marked benefits 
among patients with pre-existing diabetes compared to 
individuals who did not have diabetes at baseline. These 
pooled associations, which are predicated on recon
structed patient-level time-to-event data from high-quality 
matched cohort and prospective controlled studies, have 
strong biological plausibility and—in the absence of 
randomised trials with long-term follow-up—represent 
an important contribution regarding the potential public 
health and long-term effect of this underused weight-loss 
modality.

In subgroup analyses, gastric bypass, banding, and 
sleeve gastrectomy were associated with 50–57% lower 
rates of all-cause mortality compared with matched 
adults with obesity in the non-surgical group. Proponents 
of the notion that survival benefit is correlated with the 
extent of weight loss and remission of cardiometabolic 
comorbidities might observe that intervention effect 
sizes were greatest for Roux-en-Y gastric bypass, followed 
by sleeve gastrectomy, and then banding procedures, and 
argue that this ranking of treatment effects appears to 
mirror the gradation of weight-loss outcomes and rates 
of comorbidity resolution for each type of operation.14–23 
However, our results do not support such a notion since 
we did not detect any statistically significant heterogeneity 
in the quantum of survival benefit conferred by these 
three types of operations; although conversely, it must 
be emphasised that this result does not, therefore, 
necessarily validate the null hypothesis (of homogeneity 
of treatment effects across the three procedures). The 
comparison of intervention effects across bariatric 
operations is weakened by several limitations. First, 
the Cochran Q test, which underpins this result, has 
inherently low power to detect differences in the 
magnitude of treatment effects across subgroups. 
Second, the low power of this test is further diminished 

by the small sample size of each subgroup, and the fact 
that few participants in the sleeve gastrectomy group and 
their matched controls died over the course of their short 
follow-up (which was only up to 7 years). Third, the HR 
estimate in the gastric bypass group was not constant 
over time because there was evidence of departure from 
proportional hazards, which is probably related to an 
accelerated (steeper) failure rate in the non-surgical 
group beginning from the 14-year mark. For these 

Figure 5: Cumulative mortality and numbers-at-risk table for all participants who underwent metabolic–
bariatric surgery versus usual nonsurgical management of obesity, stratified by type of operation
(A) Subgroup analysis of RYGB patients and their matched controls. (B) Subgroup analysis of LAGB patients and 
their matched controls. (C) Subgroup analysis of LSG patients and their matched controls. Note that the relative 
hazard reduction is computed as (1 – HR) × 100% (eg, a HR of 0·475 translates to a reduction in the hazard rate of 
death of 52·5%). HR=hazard ratio. LAGB=laparoscopic adjustable gastric banding. LSG=laparoscopic sleeve 
gastrectomy. RYGB=Roux-en-Y gastric bypass.
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reasons, it is our view that the comparative effects of 
different bariatric procedures on long-term survival 
remains unresolved.

Our results are largely consistent with recent studies 
but should provide more accurate and precise estimates 
of long-term survival and intervention effects to 
guide policy and facilitate patient counselling. With 
approximately 8000 events recorded over a follow-up 
period up to 3 decades, the present analysis has adequate 
power to paint an accurate picture of the long-term 
survival outcomes of patients with metabolic–bariatric 
surgery. There were some differences between our 
conclusions and those of individual studies. For example, 
the studies by Lent and colleagues27 and Pontiroli and 
colleagues62 found no significant reduction in all-cause 
mortality for patients without diabetes, whereas our 
study delineated a clinically and statistically significant 
survival advantage in this subgroup. This result is 
probably explained by the lack of statistical power in 
individual studies, considering that their point estimates 
indicated large numerical reductions in the hazard rate 
of death in the metabolic–bariatric surgery group but did 
not meet criteria for statistical significance because of 
their wide confidence intervals. The observation that 
patients with diabetes benefit more from metabolic–
bariatric surgery correlates with findings from the SOS 
study, which has previously shown that raised baseline 
glucose and insulin concentrations were predictive of 
favourable treatment effects.73 This finding is important, 
with implications for future planning, development of 
clinical algorithms, and prioritisation of patients for 
metabolic–bariatric surgery.

Furthermore, median life expectancy projected in our 
study was 6·1 years longer for the metabolic–bariatric 
surgery group than for the control group, which is larger 
than the 3·0-year difference forecasted by SOS investi
gators, although we used identical modelling techniques 
(Gompertz proportional-hazards model) as the SOS 
study.24 The longer life expectancy difference estimated in 
our pooled patient-level analysis compared with the 
recently published SOS study warrants discussion. A 
plausible explanation relates to residual confounding in 
the SOS trial, which could have biased their results against 
the surgery group.24 As detailed in the appendix (pp 42–46), 
only 12·9% and 63·8% of participants in the SOS control 
group had diabetes and hypertension at baseline com
pared with 17·2% and 78·4% respectively in the surgery 
group. Additionally, more participants in the SOS control 
group (21·1%) had a university degree, which is a known 
predictor of lifespan, compared with 12·8% in the surgery 
group. Such imbalances—where participants in the 
control group are ostensibly healthier and more educated 
at baseline than surgical patients—could bias results in 
favour of conventional obesity management. A further 
contributing reason could be the fact that in the SOS 
study,24 close to 90% of patients underwent vertical banded 
gastroplasty (69%) or gastric banding (18%)—which could 

engender fewer metabolic benefits in terms of diabetes 
resolution and weight loss—whereas our meta-analysis 
had a higher proportion of patients undergoing 
Roux-en-Y gastric bypass or sleeve gastrectomy. Taken 
together, these factors could cause life expectancy 
differences between the surgical and control groups to be 
slightly underestimated in the SOS trial, and potentially 
account for the discrepancy between our estimates (gain 
in life expectancy of 6·1 years in our pooled analysis of 
174 772 individuals vs 3·0 years in the SOS study24).

Aside from large sample numbers, there are other 
strengths notable in the present work. To improve 
generalisability of treatment effects, our primary analyses 
and conclusions are driven by random-effects (shared-
frailty) models.53–56 These not only make the assumption 
that individual studies’ effect sizes deviate from the true 
common effect size due to sampling error, but also 
account for an additional source of variance that stems 
from heterogeneity in participant characteristics and 
interventions across studies. Moreover, our results 
changed very modestly in sensitivity analyses using 
conventional aggregate data meta-analysis or stratified 
Cox models, which are alternative methods that have 
been advocated for addressing between-study hetero
geneity arising due to the clustering of participants at the 
study-level,53–56 indicating that the pooled effect sizes are 
robust. This study is, to our knowledge, the first meta-
analysis in this field to make use of reconstructed 
individual participant data meta-analysis, which is 
heralded as the gold standard for evidence synthesis.35 
Furthermore, the inclusion of 16 high-quality matched 
cohort studies and one controlled prospective trial in this 
meta-analysis should alleviate some of the criticisms of 
previous studies, such as reverse causality, confounding 
by baseline covariate imbalances, and selection biases.

Our study has several limitations and caveats. First, 
pharmacological interventions for obesity as well as 
its associated health complications have evolved tremen
dously in recent years, and it is unclear whether the 
magnitude of the survival advantage may be attenuated 
by advances in pharmacotherapy.74 Similarly, it is also 
important to recognise limitations in the comparisons 
with respect to the lack of standardisation in the non-
surgical control group, in which patients might receive 
a more varied level of intervention. For example, this 
is evidenced in the SOS study, where the authors 
acknowledged this limitation varies from intensive 
medical intervention to none at all. Several newer classes 
of diabetes medications have since been approved after 
the turn of the century, including DPP-4 inhibitors, GLP-1 
agonists, and SGLT-2 inhibitors. Some of these drugs have 
also shown significant risk reductions for cardiovascular 
death and hospitalisation and have recently gained 
approval for treatment of heart failure.75–79 More options 
have also emerged for treatment of obesity itself, 
including orlistat, high-dose liraglutide,80,81 semaglutide,82–86 
phentermine plus topiramate, and naltrexone plus 
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bupropion.87,88 For example, semaglutide 2·4 mg once 
weekly has shown metabolic outcomes (eg, approximately 
15% weight loss on average and HbA1c reduction of 
about 1·5%) that are comparable to gastric banding 
and, therefore, it is interesting to speculate whether 
semaglutide could also yield comparable long-term 
mortality benefits.77,78,82–86 However, most included studies 
used techniques that explicitly controlled for the cohort 
entry year, such as sequential stratification matching,28,30 
sequential allocation,24 matching on the index 
date,25,29,31,33,65,66,68 or simply setting the recruitment window 
to be no more than 2 years apart (eg, 2002–03);29,66 hence, 
chronological bias should be minimal in included studies. 
Second, it is crucial to recognise that patients in the 
metabolic–bariatric surgery group—even though this 
was not necessarily stated in included studies—most 
likely continued to receive lifestyle and pharmacological 
interventions after metabolic–bariatric surgery. Hence, 
a more nuanced interpretation of our findings should 
be that metabolic–bariatric surgery, when used in 
conjunction with conventional care (medical and lifestyle 
therapies), is associated with the effect sizes obtained in 
our study. Third, although the algorithm we applied allows 
us to closely approximate the original individual patient 
time-to-event within the matched studies,47 it does not 
provide us with additional patient-level covariates, which 
could potentially afford greater insight. Fourth, we 
concentrated on all-cause mortality, because it was the 
most consistently reported primary endpoint across 
studies, whereas other time-to-event outcomes such as 
cardiovascular mortality had variable definitions that 
precluded meta-analysis and are also more likely to be 
affected by detection bias. Lastly, interpretation of our 
results must take into account the fact that most included 
studies were observational. Although their matched 
designs might mitigate confounding and selection biases, 
other sources of bias—arising from patient attrition, 
medication non-adherence, as well as data collection 
being less than rigorous (missing data and misclassified 
International Classification of Disease-9 codes)—cannot 
be eliminated.

Randomised clinical trials with sufficient power to 
assess a rare outcome such as mortality are unlikely to 
ever be done because such studies require large sample 
numbers, long-term follow-up spanning decades, and are 
prohibitively expensive. As such, our study—using one-
stage meta-analysis to synthesise evidence from the few 
high-quality longitudinal studies published to date—is 
likely to have important clinical, public-health policy, and 
research implications. One of the outstanding questions 
not adequately clarified by this review is whether the 
magnitude of survival benefits conferred by different 
types of metabolic–bariatric procedures are truly com
parable or actually differ slightly.

An intricately-related area of research is whether there 
is a disparity in the number of quality-adjusted life-years 
after different procedures. If survival benefits are truly 

equal for all three procedures, then Roux-en-Y gastric 
bypass could be associated with the fewest quality-
adjusted life-years, given that it is associated with a 
higher rate of long-term complications such as micro
nutrient and endocrine derangements.89 However, this 
cursory cost-utility analysis becomes more convoluted if 
the long-term survival of Roux-en-y gastric bypass is 
shown to be superior to other procedures, owing to the 
countervailing considerations of longer survival versus 
potentially worse quality-of-life utilities. The large 
UK By-Band-Sleeve study (NCT02841527) is currently 
ongoing to assess health-related quality of life and health 
economics of these procedures. Future research should 
also attempt to better address the extent to which survival 
benefit is mediated by weight loss, and to characterise 
such a relationship in detail. Numerous studies have 
suggested that gastrointestinal operations can exert 
weight-independent effects on diabetes18,90 and, therefore, 
it might be interesting to speculate whether some of the 
beneficial effects of metabolic–bariatric surgery on long-
term survival could also be weight-independent.91 Finally, 
it would be instructive to harmonise reporting of other 
time-to-event endpoints (eg, cardiovascular mortality) 
and competing risks to facilitate future attempts at 
individual patient data meta-analysis.

In conclusion, the results of this study show that 
metabolic–bariatric surgery is associated with substan
tially lower all-cause mortality rates and longer life 
expectancy among adults with severe obesity, with 
reasonably low numbers needed to treat to prevent one 
additional death within 10 years. Substantially greater 
survival benefits are seen among people with pre-existing 
diabetes than those without. As such, clinicians and 
policymakers should not hesitate to consider metabolic–
bariatric surgery in the management of patients with 
obesity and type 2 diabetes.
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